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This prospective nonrandomized open-label cohort study addresses the safety and efficacy of exosomes
(ExoFlo™) derived from allogeneic bone marrow mesenchymal stem cells as treatment for severe COVID-19.
During April 2020, ExoFlo was provided to 24 SARS-CoV-2 polymerase chain reaction-positive patients at a
single hospital center, all of whom met criteria for severe COVID-19 as well as moderate-to-severe acute
respiratory distress syndrome. Patients received a single 15 mL intravenous dose of ExoFlo and were evaluated
for both safety and efficacy from days 1 to 14 post-treatment. All safety endpoints were met with no adverse
events observed within 72 h of ExoFlo administration. A survival rate of 83% was observed. In total, 17 of
24 (71%) patients recovered, 3 of 24 (13%) patients remained critically ill though stable, and 4 of 24 (16%)
patients expired for reasons unrelated to the treatment. Overall, after one treatment, patients’ clinical status and
oxygenation improved with an average pressure of arterial oxygen to fraction of inspired oxygen ratio (PaO,/
FiO,) increase of 192% (P <0.001). Laboratory values revealed significant improvements in absolute neutrophil
count [mean reduction 32% (P value <0.001)] and lymphopenia with average CD3*, CD4", and CD8" lym-
phocyte counts increasing by 46% (P <0.05), 45% (P <0.05), and 46% (P <0.001), respectively. Likewise,
acute phase reactants declined, with mean C-reactive protein, ferritin, and D-dimer reduction of 77%
(P<0.001), 43% (P<0.001), and 42% (P <0.05), respectively. In conclusion, owing to its safety profile,
capacity to restore oxygenation, downregulate cytokine storm, and reconstitute immunity, ExoFlo is a prom-
ising therapeutic candidate for severe COVID-19. Future randomized controlled trials (RCTs) are needed to
determine ExoFlo therapeutic potential.
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Introduction sible. This group of patients holds particular interest for this
study, as early intervention could substantially reduce pro-
OVID-19, THE DISEASE caused by the SARS-CoV-2 gression to hypoxic respiratory failure requiring mechanical
coronavirus, has rapidly expanded into a global pan- ventilation, a clinical event associated with mortality rates
demic. Owing to the explosion of cases, concerns regarding estimated as high as 67%—-94% [2-4].
resource limitations and emerging understanding of how best Trials for experimental single target agents, including
to treat COVID-19, hospitals have developed increasing antivirals, antibiotics, and biologics, such as remdesivir,
thresholds for hospital admission as well as mechanical hydroxychloroquine, and tocilizumab, respectively, have
ventilation [1]. Before the pandemic, patients presenting yielded mixed outcomes with some associated with signifi-
with fever, dyspnea, and hypoxia, and meeting criteria for cant morbidity and mortality [5-8]. Other options for pre-
moderate-to-severe acute respiratory distress syndrome vention and treatment include vaccination and convalescent
(ARDS), would typically be intubated. However, these plasma, both of which require stable viral epitopes for their
patients are now first maintained with noninvasive supple- efficacy. But much like HIV, the SARS-CoV-2 RNA virus
mental O, and other optimization measures such as proning, mutates rapidly and directly suppresses host T cell function,
with endotracheal intubation being delayed as long as pos-  which may ultimately render these therapies ineffective [9].
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Clinically, this has been borne out with frequent presenta-
tions of multiorgan failure in the setting of immunodefi-
ciency even in previously healthy individuals.

Central to COVID-19 disease progression is the develop-
ment of cytokine storm, which is thought to be sustained and
amplified by evolving parallel processes: (1) the activation of
macrophages and other antigen presenting cells, alerting
lymphocytes to the presence of the virus, (2) viral RNA
replication within host cells, activating synthesis of proin-
flammatory factors, and (3) viral invasion of lymphocytes,
eliciting lymphocyte apoptosis and facilitating ongoing im-
mune evasion [10,11]. The complex pathophysiology sug-
gests that severe COVID-19 is more amenable to treatment
with a pleiotropic agent rather than a single target agent.

Although allogeneic bone marrow mesenchymal stem cell
(bmMSC) transplantation has shown promise, with trials
currently underway, this technology is limited by safety,
cell survivability, scalability, and regulatory issues that
make it an impractical option to meet the needs of millions
of infected patients worldwide [12-14]. However, bone
marrow derived exosomes, a complex mix of signaling na-
novesicles secreted by bmMSCs, are a novel, multitargeted,
next generation biologic agent that could be the key to
downregulating the cytokine storm, and to reversing the
suppression of host antiviral defenses that characterize
COVID-19 [15]. Containing a panoply of chemokines,
growth factors, mRNA, and microRNA with anti-
inflammatory, regenerative, and immunomodulatory func-
tions, exosomes are the paracrine and endocrine mediators
that confer bmMSCs with their healing properties, a fact that
taken together with their superior safety profile, stability,
and scalability, makes exosomes a tantalizing, practical, and
yet unexplored treatment option for COVID-19 [15-18].
Multiple preclinical studies have shown favorable thera-
peutic effects of bone marrow-derived exosomes delivered
intravenously in animal models of acute lung injury, ARDS,
asthma, and other inflammatory diseases, with analyses re-
vealing reduced alveolar inflammation, enhanced edema
clearance, restoration of leaky epithelial membranes, and
other sequelae of cytokine storm [19-24].

ExoFlo, a bmMSC-derived exosome agent, is tested for
sterility and processed and stored in FDA-registered facilities
that meet Current Good Manufacturing Practices (CGMP)
and Current Good Tissue Practices (CGTP), thereby meeting
key standards for safety profile, tissue traceability and
comprehensive instructions for use (IFU), was administered
intravenously to 24 patients with SARS-CoV-2 associated
ARDS who were clinically deteriorating. The objectives
were to evaluate, after a single dose of intravenous ExoFlo,
for safety including infusion reactions and any adverse
events as well as efficacy including overall status as evi-
denced by disposition, oxygenation as evidenced by partial
pressure of arterial oxygen to fraction of inspired oxygen
ratio (PaO,/FiO,) and oxygen support requirements, degree
of inflammation, and immunocompetence, as evidenced by
levels of C-reactive protein (CRP), D-dimer, ferritin, and cell
counts of neutrophils and T lymphocytes.

Methods

Patients were enrolled in a prospective nonblinded non-
randomized primary safety trial at a single hospital center
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from April 8 to 28, 2020. All COVID-19 patients admitted
to hospital, meeting acceptance criteria, were offered the
therapeutic intervention. Inclusion criteria included age 18-
85 years, positive result on SARS-CoV-2 polymerase chain
reaction (PCR) (treatment may be initiated before PCR
confirmation if known exposure to COVID-19-positive
contact, but ultimately, result has to be positive), and pre-
sentation of fever and/or dyspnea for >72h, overall clinical
deterioration as evidenced by downtrending PaO,/FiO, ra-
tio. All patients were already initiated on hydroxychlo-
roquine and azithromycin in the emergency department
(ED) or as an outpatient, which was the institutional and
local practice in early to mid-April 2020. Exclusion criteria
included pregnancy, severe pre-existing cardiopulmonary,
renal, hepatic, and hematologic disease, immunodeficiency
secondary to other viruses, severe metabolic disturbances
(pH <7.3), and evidence of irreversible coagulopathy (eg,
frequently occluded vascular access) or disseminated intra-
vascular coagulation (eg, profuse bleeding from endotra-
cheal tube, lines, and foley).

Written informed consent for receiving treatment de-
rived from allogeneic stem cells was obtained after the ini-
tial discussion with the patient or health care proxy.
Initial screening included a review of medical history,
physical examination, vitals during hospitalization, pertinent
laboratories and studies, and applicable objective param-
eters pertaining to critical care support, for example, ven-
tilator settings, vasopressors, inotropes, and temporary
dialysis requirements. In total, 51 patients were considered
for eligibility; 27 patients who met acceptance criteria were
enrolled into the following three study cohorts (Fig. 1):

Cohort A (h=2)

This cohort included COVID-19 outpatients with fever
and dyspnea with objective vitals of respiratory rate (RR)
220 and/or SpO, <94% on room air (RA). One patient, who
was presumed COVID-19 positive, was excluded after the
pending COVID-19 test returned negative.

Cohort B (n=21)

This cohort included COVID-19 in-patients with hypox-
emia as defined by SpO, <90% on RA or patients who
require supplemental oxygen to maintain SpO, >94%, who
require noninvasive oxygen support, which includes the
following modalities: nasal cannula, nonrebreather, nonin-
vasive positive pressure ventilation such as bilevel positive
airway pressure, and high flow nasal cannula oxygen. One
patient was excluded due to influenza A coinfection.

Cohort C (n=4)

This cohort included intubated COVID-19 patients with
hypoxic respiratory failure on mechanical ventilation. One
patient was excluded due to an IV malfunction during
administration of ExoFlo.

Administration dose and route

In total, 15 ml of ExoFlo was added to 100 mL of normal
saline and administered intravenously for 60 min.
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Assessed for eligibility (n = 51)

Excluded (N=24)
Not meeting acceptance criteria (n=19)

Patient or healthcare proxy refusal (n=5)

Non-Randomized (n=27)

Cohort A

Allocated to intervention (n=2)
Received allocated intervention (n=2)

Cohort B
Allocated to intervention (n=21)
Received allocated intervention (n=20)
Received none due to influenza A

Cohort C
Allocated to intervention (n=4)
Received allocated intervention (n=3)
Received none due to IV malfunction

confection (n=1) (n=1)
Follow-up Follow-up Follow-up
Lost to follow-up (n=0). Lost to follow-up (n=0). Lost to follow-up (n=0).

Analyzed (n=1) Analysed (n=20) Analysed (n=3)
Excluded from analysis due to thrice Excluded from Analysis (0) Excluded from Analysis (0)
negative SARS CoV-2 PCR (n=1)

FIG. 1. Consort diagram for study enrollment, allocation of intervention, follow-up, and analysis.

Assessments

Before infusion, on the day of treatment, baseline testing
was performed for the following parameters: SARS-CoV-2
PCR, BMP, CBC, PT/INR, LFT, ESR, CRP, ferritin,
D-dimer, T lymphocyte panel, mycoplasma IgM, Legionella
Ag,Strep Pneumoniae Ag, influenza A/B, urinalysis/urine
culture, blood culture, HgbAlc, blood type and screen,
chest X-ray, and EKG. Vital signs were monitored 7=5,
T=10, T=15, T=30, T=45, and T=60min after infusion
initiation, then hourly for the first 6 h postinfusion, every
3—4h thereafter per hospital standards. For inpatients, lab-
oratory collection and direct clinical evaluation were per-
formed on the day of treatment before the infusion and
repeated for days 1-14 post-treatment or until the final
day of hospitalization, with flow cytometry data collected
for the first 5 days after receiving ExoFlo. For outpatients,
laboratory collection and direct clinical evaluation were

performed on the day of treatment before the infusion and
repeated daily until recovery.

Study oversight

The study protocol was reviewed and approved by Christ
Hospital’s institutional review board (approval number IRB
2020.01) under emergency compassionate use rules for
immediate enrollment. Written informed consent was ob-
tained for all patients in accordance with local regulations.
The program was designed and conducted by the primary
and coinvestigators who collected the data, monitored the
conduct of the program, and performed the statistical anal-
ysis. All authors had access to the data and assumed respon-
sibility for the integrity and completeness of the reported
data. The IRB protocol was prepared by the primary inves-
tigator. All adverse outcomes were reviewed by an inde-
pendent data safety monitoring board (DSMB).
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Statistical analysis

Assessment of pre- and post-treatment data sets was
performed using paired #-test analysis on GraphPad Prism
8.0. No additional correlative analysis or multivariate ana-
lyses were performed. No sample size calculations were
performed. All COVID-19 patients admitted to hospital,
meeting acceptance criteria, were offered the therapeutic
intervention. The analysis population included all patients
who received their first dose of ExoFlo before April 14,
2020, and for whom clinical data for at least one subsequent
day were available.

Results
Baseline patient characteristics

Baseline demographic and clinical patients’ characteristics
are reported in Table 1. Seventeen males (age range: 45-84
years) and 10 females (age range: 29-75 years) were enrolled
from April 6 to April 13, 2020. Of the 27 patients enrolled and
treated, 3 were excluded for the following: 1—thrice negative
for COVID-19 PCR test, and 1—influenza-A coinfection, and
1—IV malfunction. Percentages of patients by race were 30%
Caucasian, 63% Hispanic, and 7% Asian. Patients with pre-
existing conditions comprised 93% of the population. Pre-
diabetic and type 2 diabetic patients comprised 86% of the
population whereas hypertension comprised 44.4%.
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Safety

No infusion reaction or adverse events were observed in
any cohort within the first 72h. No adverse events were
attributable to administration of ExoFlo. Adverse events in
Table 2 included worsening hypoxic respiratory failure re-
quiring intubation (n=4), pulmonary embolism (n=1),
acute renal failure (n=3), and expiration (n=4)—all events
occurring >72h after treatment in seven patients, which
were evaluated by the DSMB to be reasonably attributable
to COVID-19 progression or to a clear temporally correlated
provoking stimulus.

Overall clinical outcome

The survival rate in the study was 83%. In total 71% of
the patients (17/24) recovered and/or were discharged from
the hospital after a mean of 5.6 days after intravenous
ExoFlo administration. A total of 16% of the patients (4/24)
expired and 13% of the patients (3/24) remained critically
ill, requiring mechanical ventilation and intensive care.

Oxygenation

Oxygenation was assessed by calculating partial PaO, to
FiO, as well as tracking oxygen support requirement at
baseline, on day of treatment, and days 1-14 after admin-
istration of the ExoFlo. In total, 80% of patients (20/24)

TABLE 1. CLINICAL DEMOGRAPHICS

Baseline demographics and pretreatment conditions of enrolled participants

Total Cohort A Cohort B Cohort C
(n=27) (n=2) (n=21) (n=4)
Age (years) Range (median) 29-84 (59) 49-84 45-75 (62) 29-66 (54)
<50 8 1 6 1
50 to <70 14 — 11 3
=70 5 1 4 0
Gender Male 17 2 14 1
Female 10 0 7 3
Body mass index Weight (kg)/height (m)"2 29.7 28.5 29 343
O, support category Mechanical ventilation 2 0 0 2
BI-PAP 2 0 2 0
High flow oxygen (HFNC) 5 — 4 1
NRB 10 0 11 0
NC 4 1 3 —
Room air 1 1 — —
Illness before treatment Duration (days) 15 6.5 16 11.3
Illness before admission Duration (days) 8.5 N/A 9.6 1.7
Pre-existing comorbidities Pre-T2DM 3 0 1 2
T2DM 20 1 18 1
Hypertension 12 1 10 1
Hyperlipidemia 5 1 4 0
Any condition 25 2 20 3
Stage of ARDS Mild (200 to <300) 1 1 0 0
(Pa0,/FiO,)
Moderate (100 to <200) 11 1 10 0
Severe (<100) 13 0 9 4

All participants met criteria for moderate-to-severe ARDS based on clinical presentation, acute onset, noncardiogenic etiology, and PaO,/
FiO, ratio <200 mmHg. In total, 86% of the patients in the study had either T2DM or pre-T2DM. Although the early stages of the COVID-
19-associated viral pneumonia may not be entirely consistent with ARDS in many patients, PaO,/FiO, ratio remains a vital oxygenation

metric.

ARDS, acute respiratory distress syndrome; BI-PAP, bilevel positive airway pressure; FiO,, fraction of inspired oxygen ratio; HFNC,
high flow nasal cannula; PaO,, pressure of arterial oxygen; NC, nasal cannula; NRB, nonrebreather; T2DM, type 2 diabetes mellitus.
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TABLE 2. ADVERSE EVENT LOG

All adverse events including outcomes not likely associated with treatment

PostTx day Cohort A (n=2) Cohort B (n=21) Cohort C (n=4) Total events
0-1 0 0 0 Pulmonary embolus n=1
2 0 0 0 Respiratory failure n=4
3 0 0 0 Acute renal failure n=3
4 0 Expiration (n=1) 0 Expiration n=4
5 0 Respiratory failure (n=1) Expiration (n=1)
6 0 Respiratory failure (n=2) 0
7 0 0 0
8 0 0 0
9 0 Acute renal failure (n=1) 0
10 0 Respiratory failure (n=1) 0
11 0 Acute renal failure (n=1) 0
12 0 Expiration (n=1), pulmonary 0
embolus (n=1)
13 0 Acute renal failure (n=1) Expiration (n=1)
14 0 0

All adverse events were reviewed by an independent DSMB. None of the adverse events were attributable to the therapeutic intervention.

DSMB, data safety monitoring board.
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FIG. 2. Disposition or final study clinical status, partial PaO,/FiO, ratio, in addition to oxygen requirement before and
after administration of ExoFlo on days 1-14. Average PaO,/FiO, ratio increase was 191% (P <0.001) comparing baseline
with 14 days after treatment or final known value. FiO,, fraction of inspired oxygen ratio; PaO,, pressure of arterial oxygen.
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exhibited improved PaO,/FiO, ratio within 3 days of treat-
ment. The mean increase of PaO,/FiO, from baseline to day
14 post-ExoFlo treatment or final day of hospitalization was
191% (P<0.001) and correlated with the reduced require-
ment of oxygen support as shown in Fig. 2. Optimal re-
sponders exhibited PaO,/FiO, of 200 mmHg by day 3 after
ExoFlo treatment, which was a strong predictor of hospital
discharge; suboptimal responders were noted to exhibit
slight improvement of PaO,/FiO, but not >200 mmHg by
day 3.

Laboratory data

Significant reductions in levels of the acute phase re-
actants CRP, ferritin, and D-dimer are shown in Fig. 3.
The mean reduction of CRP was 77%, the mean reduction
of ferritin was 43%, and the mean reduction of D-dimer
was 42% between baseline and values measured on day 5
post-treatment. There were statistically significant re-
ductions in absolute neutrophil count and statistically
significant increases in absolute lymphocyte count in-
cluding subsets staining positive for CD3*, CD4", and
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CDS8" on flow cytometry when comparing baseline with
day 5 post-ExoFlo treatment.

Discussion

This prospective open-label trial on the treatment of
COVID-19 demonstrated that the bone-marrow-derived
product, ExoFlo, can be administered safely through intra-
venous infusion. The study met all of its primary endpoints.
All patients were administered ExoFlo without any infusion
reaction. There were no adverse effects in the immediate
(<6h), intermediate (<24 h), or delayed (<72h) period. All
adverse events occurring >72h after administration of
ExoFlo were reviewed by an independent DSMB and con-
cluded to be unrelated to the therapeutic intervention.

All patients in cohort B met criteria for moderate-to-
severe ARDS; due to their downtrending PaO,/FiO, ratio,
these patients were expected to require mechanical venti-
lation within 12-24h before the therapeutic intervention.
Only 25% (4/20) in cohort B progressed to mechanical
ventilation, a critical event associated with significantly
higher morbidity and mortality. Considering that mortality
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FIG. 3. Acute phase reactants (CRP, ferritin, and D-dimer) and immune cell populations on day of treatment before IV
administration of ExoFlo and on day 5 post-treatment. Mean reductions of CRP, ferritin, and D-dimer reductions were 77%
(P<0.001), 43% (P<0.001), and 42% (P <0.05), respectively. Mean reduction of ANC was 32% (P <0.001); total lym-
phocyte count increased by 36% (P <0.05) with CD3", CD4", and CD8" T lymphocytes increased by 46% (P <0.05), 45%
(P<0.05), and 46% (P <0.001), respectively. ANC, absolute neutrophil count; CRP, C-reactive protein.
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rates are estimated as high as 60%-79% in patients re-
quiring noninvasive oxygen support [25,26], our prelimi-
nary findings suggest that ExoFlo may be a preventative
measure against progression to invasive oxygen support
and mechanical ventilation, though further studies with
randomized controlled trials (RCTs) are warranted to prove
efficacy. In total, 75% of cohort B (16/20) recovered, as evi-
denced by discharge from the hospital, demonstrating a pro-
found reversal of disease progression and suggesting that the
optimal time to administer ExoFlo is early in the cytokine
storm. Overall, treatment with ExoFlo was associated with an
83% survival rate and a significant improvement in oxygena-
tion as evidenced by a mean increase of 191% in PaO,/FiO,
ratio (P<0.001) as well as reduced oxygen support require-
ments within 48-72 h. Improved PaO,/FiO, ratio >200 mmHg
by day 3 post-treatment was strongly predictive of eventual
hospital discharge and recovery.

Interestingly, even among suboptimal responders, all
clinical parameters including oxygenation and inflammatory
markers showed an initial favorable response to ExoFlo,
effects that peaked at days 3—4, suggesting a redose at day 3
post-ExoFlo treatment may be warranted. This is consistent
with preclinical observations that circulating proteases may
inactivate exosomal products, rendering a time-dependent
effect in a subset of patients [15]. The significantly im-
proved neutrophilia and lymphopenia including increased
CD3", CD4", and CD8" T lymphocytes in addition to the
reduction in acute phase reactants after ExoFlo administra-
tion suggest that one main therapeutic mechanism of action
may be modulation of immune dysfunction.

Overall, the strengths of this study include minimal se-
lection bias in addition to absence of financial sponsorship as
the study was prepared, designed, and implemented by in-
dependent clinicians. The primary weaknesses of this study
are the absence of randomization, blinding, and the limited
sample size. Furthermore, only one exosomal product, Exo-
Flo, was studied. Owing to the heterogeneity and complexity
of exosomal products, the favorable preliminary data on
safety and efficacy of ExoFlo cannot be interpreted as a class
effect. Notably, bmMSC-derived exosomes were selected for
this study over perinatally derived exosomes (placental, am-
niotic, or umbilical) because of the greater abundance of
peer-reviewed research characterizing and confirming the
safety profile of bmMSC-derived exosomes [24,25,27].

This is the first known clinical study to date using
bmMSC-derived exosomes as treatment for any disease in
an inpatient setting. Despite supporting evidence in medical
literature, the clinical use of regenerative medicine has been
limited to the outpatient setting, in part due to cognitive
biases and lack of understanding among physicians, insti-
tutions, and regulatory agencies. This study demonstrated
profound reversal of hypoxia, immune reconstitution, and
downregulation of cytokine storm in patients hospitalized
with severe COVID-19 following a single intravenous dose
of bone marrow derived exosomes, with no adverse effects
attributable to the treatment. Ultimately, the application of
bone-marrow-derived exosomes may extend far beyond
SARS-CoV-2 ARDS or COVID-19, spanning a myriad
of inflammatory disease states, including classic ARDS,
chronic obstructive pulmonary disease, sepsis, autoimmune
disease, and cancer [26-34]. Further clinical studies are
warranted to investigate safety and efficacy.
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